Department of Periodontology, Research Center for Orofacial Hard Tissue Regeneration (MRC), College of Dentistry, Yonsei University
Abstract: (1675 Views)
Background: The objective of this study is to compare a candidate β-tricalcium phosphate (β-TCP) carrier technology with the absorbable collagen sponge (ACS) benchmark to support recombinant human growth/differentiation factor-5 (rhGDF-5)–stimulated periodontal wound healing/regeneration.
Methods: Routine, bilateral, critical-size (5-mm), 1-wall, intrabony periodontal defects were surgically created in the mandibular premolar region in 10 beagle dogs. Five animals received rhGDF-5/β-TCP and five animals received rhGDF-5/ACS, with a total of 20 μg rhGDF-5 per defect. The animals were euthanized for histologic and histometric analyses at 8 weeks postsurgery.
Results: Both rhGDF-5/ACS and rhGDF-5/β-TCP stimulated the formation of functionally oriented periodontal ligament, cellular mixed fiber cementum, and woven/lamellar bone. Bone regeneration (height and area) was significantly greater for the rhGDF-5/β-TCP construct than for the rhGDF-5/ACS (3.26 ± 0.30 mm versus 2.22 ± 0.82 mm, P <0.01 and 10.45 ± 2.26 mm2 versus 5.62 ± 2.39 mm2, P <0.01, respectively). Cementum formation ranged from 3.83 ± 0.73 mm to 3.03 ± 1.18 mm without significant differences between groups. Root resorption/ankylosis was not observed.
Conclusions: The β-TCP carrier technology significantly enhanced rhGDF-5–stimulated bone formation compared with the ACS benchmark in this discriminating periodontal defect model. The structural integrity of the β-TCP carrier, preventing compression while providing a framework for bone ingrowth, may account for the observed results.
Kim Y, M.E. Wikesjö U, Jung U, Lee J, Kim T, Kim C. Comparison Between a β-Tricalcium Phosphate and an Absorbable Collagen Sponge Carrier Technology for rhGDF-5–Stimulated Periodontal Wound Healing/Regeneration. 3 2012; 6 (6) URL: http://idai.ir/article-1-1335-en.html